Lambretta: Learning To Rank For Twitter Soft Moderation
Published in 44th IEEE Symposium on Security and Privacy (SP), 2023
To curb the problem of false information, social media platforms like Twitter started adding warning labels to content discussing debunked narratives, with the goal of providing more context to their audiences. Unfortunately, these labels are not applied uniformly and leave large amounts of false content unmoderated. This paper presents LAMBRETTA, a system that automatically identifies tweets that are candidates for soft moderation using Learning To Rank (LTR). We run Lambretta on Twitter data to moderate false claims related to the 2020 US Election and find that it flags over 20 times more tweets than Twitter, with only 3.93% false positives and 18.81% false negatives, outperforming alternative state-of-the-art methods based on keyword extraction and semantic search. Overall, LAMBRETTA assists human moderators in identifying and flagging false information on social media.
Recommended citation: P. Paudel, J. Blackburn, E. De Cristofaro, S. Zannettou and G. Stringhini, “Lambretta: Learning To Rank For Twitter Soft Moderation,” 2023 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 2023. https://ieeexplore.ieee.org/abstract/document/10179392